Zippay Lab
Environmental Physiology
In the broadest sense, my research interests focus on the comparative and molecular physiology of marine invertebrates that inhabit dynamic environments. Much of my research has centered on understanding how variation in the natural environment translates to an organism’s physiological performance by coupling molecular, cellular and biochemical processes in an ecological context. Notably, my physiological interests allow me to integrate my research with molecular, climate change biology and biophysical modeling. Currently, my research focuses on using intertidal mussels as a model organism to integrate molecular based analyses of cellular stress with oceanographic and climatic variables to quantitatively predict patterns of growth, reproduction and survival across multiple spatial scales. To this end, I am integrating dynamic energy budget models into an interdisciplinary framework to address physiological responses of organisms to physical and environmental variables. This bioenergetic model uses a quantitative framework to describe the rates at which individual organisms exploit energy from food from their habitat and how efficient they are at utilizing the available energy. A key aspect of this method is to elucidate energetic pathways that may be compromised by environmental variation and could lead to sublethal responses like changes in growth and reproduction, allowing me to address whether these animals possess sufficient physiological plasticity to adapt to rapid global climate change.